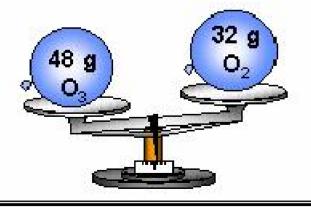

The Mole

So what is a mole?



Not a furry creature Not a naked rat Not a dark spot on your skin

Amount of Substance

same mass different amounts of substance

different mass same amount of substance

A mole is a number of something

Like.....

A Dozen is 12 of something
A Gross is 144
A Ream is 500
A Baker's Dozen is 13
A Mole is 6.02 x 10²³

A Big Number

A Mole is just a very, BIG NUMBER

A Mole of Coke Cans

An Avogadro's number of standard soft drink cans would cover the surface of the earth to a depth of over 200 miles.

Imagine Popped Popcorn

If you had Avogadro's number of unpopped popcorn kernels,

and spread them across the United States of America,

the country would be covered in popcorn to a depth of over 9 miles.

Do You Have Time?

If we were able to count atoms at the rate of 10 million per second,

it would take about 2 billion years to count the atoms in one mole.

Avogadro's Principle

Equal volumes of all gases at the same temperature and pressure contain the same number of molecules.

One mole at STP has a volume of 22.4 L.

Avogadro's Number

The number of molecules in one mole is now called **Avogadro's number**.

BUT

Avogadro had no knowledge of the MOLE Nor of the Magnitude of the Number

Moles and molar mass came later.....after the Periodic Table was "discovered"

6.02×10^{23}

The number was never actually determined by Avogadro.

The "counters" just named the number after him!!!

If you want to know HOW TO COUNT the number...go to http://avogadro.che.hw.ac.uk/avoga.html

Compound	Molar Mass g	Particles in 1 Mole	Mass of 2 moles g	Particles in 2 moles	Mass of 0.5 Moles 9	Particles in 0.5 moles
H ₂ O						
NaCl						

Raindrops: How many Moles

50 grams H₂O

How many moles H₂O
(2.78 moles H₂O)

How many H₂O molecules?

1.66 x 10^{24} molecules H_2O)

Some Problems

Determine the number of grams in 1 mole Antimony

121.80 g Sb

Determine the number of grams in 1 mole glucose ($C_6H_{12}O_6$)

180.12 g glucose

More Problems

Determine the number of moles in 107.87 g Silver

(This is very easy)

1 mole Ag

Determine the number of molecules in 1 mole glucose

(This is also easy)

 6.02×10^{23} molecules glucose

MORE !!!

Determine the number of atoms in 21.62 g Boron

 $1.24 \times 10^{24} \text{ atoms B}$

Determine the number of molecules in 12.00 moles water

 $7.22 \times 10^{24} \text{ molecules H}_2\text{O}$

Even More !!!

Determine the number of moles in 58.45 g Sodium

2.54 moles Na

Determine the number of molecules in 0.25 moles NaCl

1.51 x 10²³ molecules NaCl

This One Is Tricky

Determine the mass of 1 molecule of oxygen gas.

```
32.00g O_2 / 1 mole O _2 mole O_2 / 6.02 \times 0^{23} molecules O_2
```

 $5.32 \times 10^{-23} \text{ g/molecule O}_2$

Some Rules

Mass to Moles~~~Divide by Molar Mass

Moles to Mass~~~Multiply by Molar Mass

Moles to Particles~~Multiply by Avogadro's Number

Particles to Moles~~Divide by Avogadro's Number

Two Steps!!

Grams to Particles Divide by Molar Mass and Multiply by Avogadro's Number

Particles to Grams

Divide by Avogadro's Number and

Multiply by Molar Mass

Sources

- http://www.janbrett.com/postcards/1ca rdpick_mitten.html
- http://avogadro.che.hw.ac.uk/avoga.ht
 ml
- http://antoine.frostburg.edu/chem/sene se/101/tutorials/index.shtml
- http://24.225.17.65/Math/count/num6.htm